skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pan, Chen-Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Recently, brushless motors with especially high torque densities have been developed for applications in autonomous aerial vehicles (i.e. drones), which usually employ exterior rotortype geometries (ER-BLDC motors). These motors are promising for other applications, such as humanoids and wearable robots; however, the emerging companies that produce motors for drone applications do not typically provide adequate technical specifications that would permit their general use across robotics-for example, the specifications are often tested in unrealistic forced convection environments, or are drone-specific, such as thrust efficiency. Furthermore, the high magnetic pole count in many ER-BLDC motors restricts the brushless drives able to efficiently commutate these motors at speeds needed for lightly-geared operation. This paper provides an empirical characterization of a popular ER-BLDC motor and a new brushless drive, which includes efficiencies of the motor across different power regimes, identification of the motor transfer function coefficients, thermal response properties, and closed loop control performance in the time and frequency domains. The intent of this work is to serve as a benchmark and reference for other researchers seeking to utilize these exciting and emerging motor geometries. 
    more » « less